

A Scalable Monitoring Platform for the Internet (SCAMPI)

RIPE 48 Meeting 5th May 2004

Arne Øslebø UNINETT AS

SCAMPI overview

2 ½ year 5th Framework project

- Started April 2002
- 10 partners:
 - CESNET
 - FORTH
 - FORTHNET
 - IMEC
 - Leiden University

- Masaryk University
- NETIKOS
- Siemens
- TERENA
- UNINETT

- Main goals:
 - Development of a high-performance intelligent monitoring adapter for 10Gbps
 - Development of an open and extensible architecture for network monitoring.
 - Development of monitoring and measurement tools
 - Investigate strategies and methodologies for monitoring systems operating at 100 Gbps and beyond.

SCAMPI adapter

- Developed by CESNET and Masaryk University
- Based on Liberouter project
- Open source
- Three cards:
 - Motherboard
 - Interface card
 - Timestamp unit
- 4-port 1GE interface card
- 2-port 10GE interface card
- Each card has programmable FPGAs, CAMs and DRAM.
- Nanoprocesors

Motherboard

Interface card

Hardware functions

- Header filtering (BPF syntax)
- Packet sampling (deterministic and probabilistic)
- Payload string searching
- Support for multiple simultaneous applications with different filtering/sampling requirements.

MAPI

- Monitoring Application Programming Interface
- Design goals:
 - Make it quick and easy to implement new monitoring applications
 - Low overhead
 - Support for multiple concurrent users and applications
 - Global optimization
 - Optimize processing of packets based on all applications from all users.
 - Transparent support for different hardware adapters
 - Easy to extend
 - New drivers
 - function libraries
- Support for:
 - SCAMPI adapter
 - DAG cards
 - NIC

MAPI basics

- Network flow
 - mapi_create_flow
 - Initially all packets seen on the network
- Apply functions to a flow
 - mapi_apply_functions
 - BPF filter, string search, packet counter, byte counter, Netflow, jitter etc.
- Read results
 - mapi_read_result
- MAPId
 - Daemon that communicates with hardware devices and processes packets in software.

y

MAPI example

Virus detection:

```
fd=mapi create flow("/dev/daq0");
mapi_apply_function(fd,BPF_FILTER,"src port 1234");
ctr_id1=mapi_apply_function(fd,PKT_COUNTER);
mapi_apply_function(fd,STR_SEARCH,"pattern",100,300);
ctr_id2=mapi_apply_function(fd,PKT_COUNTER);
mapi_apply_function(fd,TO_FILE,MFF_TCPDUMP,"tcpdump.dat",0);
mapi_connect(fd);
wile(1) {
      mapi_read_results(fd,ctr_id1,&ctr_val1);
      mapi read results(fd,ctr id2,&ctr val2);
      printf("BPF match: %d String search match: %d\n",
            ctr val1,ctr val2);
      sleep(10);
```


Applications

- Intrusion detection
 - uses Snort signatures
- QoS application
 - packet loss
 - jitter
 - delay
- Flowrep
 - generic report generator with a web frontend for Netflow/IPFIX records

Flowrep

- Generic netflow based report application
- Flow-tools
- Reports stored in database
- Web frontend

