
Ripe 48, Amsterdam-NL, May 2004

IPv6 Land Speed Record

Edoardo Martelli, CERN
DataTAG

2Ripe48, Amsterdam- NL, May 2004

The DataTAG project

The DataTAG project has created a large-scale intercontinental Grid
testbed involving the European DataGrid project, several national projects

in Europe, and related Grid projects in the USA.

The project explored some forefront research topics like the design and
implementation of advanced network services for guaranteed traffic

delivery, transport protocol optimisation, efficiency and reliability of network
resource utilization, user-perceived application performance, middleware

interoperability in multi domain scenarios, etc.

The DataTAG was a project co-funded by the European Union, the U.S.
Department of Energy, and the National Science Foundation.The members

were CERN (project leader), INFN, INRIA, PPARC and UvA.

The project finished in March 2004, receiveing a very positive evaluation
fron the EU.

3Ripe48, Amsterdam- NL, May 2004

Member Organizations

http://www.datatag.org/

4Ripe48, Amsterdam- NL, May 2004

Partners

5Ripe48, Amsterdam- NL, May 2004

Internet 2 Land Speed Record
competition

A primary goal of Internet2 is to deploy and demonstrate advanced
networking capabilities that will make their way into the global commodity

Internet.

The Internet2 Land Speed Record (I2-LSR) competition for the highest-
bandwidth over the longest distance, TCP based, end-to-end networks

data transfer is an open and ongoing contest.

The aim of this competition is to encourage people to deploy new
applications and protocols able to take advantage of the very high speed

networks available today.

http://lsr.internet2.edu/

6Ripe48, Amsterdam- NL, May 2004

LSR contest rules

●[...]
● A data transfer must run for a minimum of 10 continuous minutes over a
minimum terrestrial distance of 100 kilometers with a minimum of two router
hops in each direction between the source node and the destination node
across one of more operational and production-oriented high-performance
research and educations networks.
●All data must be transferred end-to-end between a single pair of IP
addresses using TCP/IP protocol code implementations of RFC 793 and
RFC 791.
●Instances of all hardware units and software modules used to transfer
contest data on the source node, the destination node, the links, and the
routers must be offered for commercial sale or as open source software.

7Ripe48, Amsterdam- NL, May 2004

TCP/IPv6 single stream LSR

On November 18, 2003, Caltech and CERN transferred 560 Gigabytes of
data in 20 minutes between Geneva and the Caltech stand at

SuperComputing 2003 in Phoenix, through the LHCnet/DataTag, Abilene
and SciNet backbones, using a single TCP/IPv6 stream.

Distance: 11539 km

Data transferred: 560 Gbytes

Average speed (over 20 minutes): 4.00 Gbps

Record submitted: 46,156,000,000,000,000 meters-bits/sec

8Ripe48, Amsterdam- NL, May 2004

Network map

9Ripe48, Amsterdam- NL, May 2004

Traceroute

[root@oplapro28]# traceroute6 2001:468:1f07:1323::5

traceroute to 2001:468:1f07:1323::5 (2001:468:1f07:1323::5) from 2001:1458:e000:100::10, 30
hops max, 24 byte packets

 1 2001:1458:e000:100::1 (2001:1458:e000:100::1) 0.688 ms (Juniper T320 Geneva)

 2 2001:1458:e000:1::1 (2001:1458:e000:1::1) 127.237 ms (Juniper T320 Chicago)

 3 2001:1458:e000:1:1::1 (2001:1458:e000:1:1::1) 127.383 ms (Abilene Core Router)

 4 iplsng-chinng.abilene.ucaid.edu (2001:468:ff:f12::2) * (Abilene Core Router)

 5 iplsng-kscyng.abilene.ucaid.edu (2001:468:ff:1213::2) 140.653 ms (Abilene Core Router)

 6 snvang-kscyng.abilene.ucaid.edu (2001:468:ff:1317::2) 185.082 ms (Abilene Core Router)

 7 losang-snvang.abilene.ucaid.edu (2001:468:ff:1417::1) * (Abilene Core Router)

 8 2001:468:ff:14c3::2 (2001:468:ff:14c3::2) 192.436 ms (SciNet Router)

 9 2001:468:1f07:1323::5 (2001:468:1f07:1323::5) 192.784 ms (End host in Phoenix)

Geneva - Chicago (LHCnet/Datatag): 7067 km
Chicago - Indianapolis (Abilene): 263 km
Indianapolis - Kansas City (Abilene) 727 km
Kansas City - Sunnyvale (Abilene): 2403 km
Sunnyvale - Los Angeles (Abilene): 489 km
Los Angeles - Phoenix (SciNet): 590 km

Total: 11539 km

10Ripe48, Amsterdam- NL, May 2004

Equipment - End Systems

At CERN: HP RX2600 server
- Dual Intel Itanium2 1.5 Ghz CPU
- 4GB RAM
- Intel PRO/10GbE LR network adapter
- Linux kernel 2.6.0-test5

At Caltech: PC server
- Dual Intel Xeon 3.20 Ghz CPU
- Supermicro X5DPE motherboard (E7501 chipset)
- 2 GB RAM
- Intel PRO/10GbE LR network adapter
- Linux kernel 2.4.22

11Ripe48, Amsterdam- NL, May 2004

Equipment – routers and switches

CERN:
Juniper T320 Router

Chicago Starlight:
Juniper T320 Router
Cisco 7609 Switch

Abilene Backbone:
Juniper T640 Routers

SciNet Backbone:
Juniper T320 Router

SC2003:
Cisco 7609 Switch

12Ripe48, Amsterdam- NL, May 2004

IPv6 vs IPv4

In the same period and with almost the same setup (the distance was
shorter, but the endstations were the same) also the TCP/IPv4 LSR was
set. But IPv4 was better:

IPv4
Distance: 10949 KM
Data transferred: 2.3 Terabytes
Average speed (over 60 minutes): 5.64 Gbps
Record submitted: 61,752,360,000,000,000 meters-bits/sec

IPv6
Distance: 11539 km
Data transferred: 560 Gbytes
Average speed (over 20 minutes): 4.00 Gbps
Record submitted: 46,156,000,000,000,000 meters-bits/sec

Sender CPU at 100% in both cases. Linux TCP/IPv4 stack more efficient.

13Ripe48, Amsterdam- NL, May 2004

TCP background

Responsiveness to packet losses is proportional to the square of the RTT (Round Trip Time):
R=C*(RTT**2)/2*MSS (where C is the link capacity and MSS is the max segment size). This is not
a real problem for standard traffic on a shared link, but a serious penalty for long distance transfers
of large amount of data.

The TCP stack was designed a long time ago and for much slower networks: from the above
formula, if C is small, the responsiveness is kept low enough for any terrestrial RTT. Modern, fast
WAN links are "bad" for TCP performance, since TCP tries to increase its window size until
something breaks (packet loss, congestion); but then restarts from a half of the previous value until
it breaks again. This gradual approximation process takes very long over long distance and
degrades performance.

Knowing a priori the available bandwidth,TCP is prevented from trying larger windows by
restricting the amount of buffers it may use. So, packet losses due to link congestion o or CPU
choke can be avoided, and an optimal throughput can be achieved.

The product C*RTT gives the optimal TCP window size for a link of capacity C.

14Ripe48, Amsterdam- NL, May 2004

End systems settings

For Linux 2.4.22:

set mmrbc to 4k reads, modify only Intel 10GbE device IDs

setpci -d 8086:1048 e6.b=2e

set the MTU (max transmission unit) - it requires your switch and clients to change too!

set the txqueuelen

ifconfig eth2 mtu 9000 txqueuelen 50000 up

call the sysctl utility to modify /proc/sys entries

net.ipv4.tcp_timestamps = 0 # turns TCP timestamp support off, default 1, reduces CPU use

net.ipv4.tcp_sack = 0 # turn SACK support off, default on

on systems with a VERY fast bus -> memory interface this is the big gainer

net.ipv4.tcp_rmem = 10000000 10000000 10000000 # sets min/default/max TCP read buffer, default 4096 87380 174760

net.ipv4.tcp_wmem = 10000000 10000000 10000000 # sets min/pressure/max TCP write buffer, default 4096 16384 131072

net.ipv4.tcp_mem = 10000000 10000000 10000000 # sets min/pressure/max TCP buffer space, default 31744 32256 32768

net.core.rmem_max = 524287 # maximum receive socket buffer size, default 131071

net.core.wmem_max = 524287 # maximum send socket buffer size, default 131071

net.core.rmem_default = 524287 # default receive socket buffer size, default 65535

net.core.wmem_default = 524287 # default send socket buffer size, default 65535

net.core.optmem_max = 524287 # maximum amount of option memory buffers, default 10240

net.core.netdev_max_backlog = 300000 # number of unprocessed input packets before kernel starts dropping them, default 300

Before all new connections: sysctl -w net.ipv4.route.flush=1

15Ripe48, Amsterdam- NL, May 2004

iperf settings

Iperf (http://dast.nlanr.net/Projects/Iperf/) version 1.7.0 was used to
generate traffic and measure performance.
Sender:
[root@oplapro28 iperf-1.7.0]# ./iperf -B 2001:1458:e000:100::10 -c 2001:468:1f07:1323::5 -i10
-w250m -t 1200 -l9000
--
Client connecting to 2001:468:1f07:1323::5, TCP port 5001
Binding to local address 2001:1458:e000:100::10
TCP window size: 500 MByte (WARNING: requested 250 MByte)
--
[3] local 2001:1458:e000:100::10 port 32785 connected with 2001:468:1f07:1323::5 port 5001
....
[3] 0.0-1201.0 sec 560 GBytes 4.00 Gbits/sec

Receiver:
[root@b7 iperf-1.7.0]# ./iperf -V -s -B 2001:468:1f07:1323::5 -i10 -t1200 -w250m -l9000
--

Server listening on TCP port 5001
Binding to local address 2001:468:1f07:1323::5
TCP window size: 500 MByte (WARNING: requested 250 MByte)
--
[4] local 2001:468:1f07:1323::5 port 5001 connected with 2001:1458:e000:100::10 port 32785
....
[4] 0.0-1201.2 sec 560 GBytes 4.00 Gbits/sec

16Ripe48, Amsterdam- NL, May 2004

Conclusions

Special tuning of end systems is needed (althought not in the TCP stack)

No serious performance penalty for IPv6 with respect to IPv4, but still some
differences in the end system TCP/IP stack implementations

The bootleneck is now in the end systems and not in the network

17Ripe48, Amsterdam- NL, May 2004

Acknowledgements

California Institute of Technology (Caltech):

 Harvey Newman <newman@hep.caltech.edu>

 Steven Low <slow@caltech.edu>

 Julian Bunn <julian@cacr.caltech.edu>

 Suresh Singh <suresh@cacr.caltech.edu>

 Yang Xia <yxia@hep.caltech.edu>

 Sylvain Ravot <ravot@caltech.edu>

 Dan Nae <Dan.Nae@cern.ch>

CERN:

 Olivier Martin <olivier.martin@cern.ch>

 Paolo Moroni <paolo.moroni@cern.ch>

 Edoardo Martelli <edoardo.martelli@cern.ch>

 Daniel Davids <daniel.davids@cern.ch>

 Sverre Jarp (CERN OpenLab) <sverre.jarp@cern.ch>

 Andreas Hirstius (CERN OpenLab) <andreas.hirstius@cern.ch>

Partners: Caltech, CERN

Sponsors: Intel, Cisco Systems, HP, T-Systems/DeutscheTelecom, DoE, NSF, European Union

Acknowledgements: CERN OpenLab, DataTag, StarLight

